Skip to main content

实战库

实战库中,写出来的 ✅,未完成 ❎

算法题目

✅ 1. 一段连续内存数组中,快速删除某个值,存在重复值 中等

class Solutions:
def __init__(self) -> None:
pass

def fastDelNumber(self, nums, target):
# 双指针 left, right
# Time: O(N) Space: O(1)
n = len(nums) - 1
left, right = 0, n
count = 0
while left <= right:
# right 指向 非 target 下标
while nums[right] == target:
right -= 1
count += 1
if nums[left] == target:
nums[left], nums[right] = nums[right], nums[left]
left += 1
right -= 1
count += 1
left += 1
right -= 1
return nums[:n - count]

def s1(self, nums, target):
if not nums: return nums
# 排序 + 二分查找:
# Time: O(logK) + O(logN) Space: O(1)
nums.sort()
n = len(nums) - 1
start = end = 0
left, right = 0, n
while left <= right:
mid = left + (right - left)//2
if nums[mid] == target:
start = end = mid
# 左右定位值范围
while start > 0 and nums[start] == nums[start - 1]:
start -= 1
while end < n and nums[end] == nums[end + 1]:
end += 1
return nums[:start + 1] + nums[end:]
elif nums[mid] < target:
left = mid + 1
else:
right = mid - 1
return nums

✅ 力扣 86. 分隔链表 中等

# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def partition(self, head: Optional[ListNode], x: int) -> Optional[ListNode]:
# O(n) O(1)
# 创建两个头结点,用于存放小于 x 等于或大于 x 的节点
dummy1 = ListNode()
dummy2 = ListNode()

# 创建两个指针,分别指向两个虚拟头结点
smaller = dummy1
greater = dummy2

cur = head
while cur:
if cur.val < x:
smaller.next = cur
smaller = smaller.next
else:
greater.next = cur
greater = greater.next

cur = cur.next
# 将小于 x 的节点部分的尾节点连接到大于或等于 x 的节点部分的头节点
smaller.next = dummy2.next
# 将大于或等于 x 的节点部分的尾节点的 next 置为 None,表示链表结束
greater.next = None

# 返回重新排列后的链表的头节点
return dummy1.next

✅ 力扣 215. 数组中的第K个最大元素 中等

# 无序数组找第 K 大的数,要求:1. 复杂度至少O(NlogN)
import heapq

class Slutions:
def largestK(nums, k):
heap = []
# 小顶堆 O(Nlogk),
for num in nums:
# 入栈
heapq.heappush(heap, num)
if len(heap) > k:
# 最小值出栈
heapq.heappop(heap)
print(heap[0])
return heap[0]

✅ 力扣 23. 合并 K 个升序链表 困难

# Definition for singly-linked list.
# class ListNode:
# def __init__(self, val=0, next=None):
# self.val = val
# self.next = next
class Solution:
def mergeKLists(self, lists: List[Optional[ListNode]]) -> Optional[ListNode]:
def mergeList(l1, l2):
if not l1: return l2
if not l2: return l1
dummy = ListNode(0)
curr = dummy
while l1 and l2:
if l1.val <= l2.val:
curr.next = l1
l1 = l1.next
else:
curr.next = l2
l2 = l2.next
curr = curr.next
# 剩余链表接到尾部
curr.next = l1 if l1 else l2
return dummy.next

n = len(lists)
if n == 0:
return None
if n == 1:
return lists[0]
if n == 2:
return mergeList(lists[0], lists[1])

left = lists[:n//2]
right = lists[n//2:]

return mergeList(self.mergeKLists(left), self.mergeKLists(right))

✅ 5. 01 排序,一个 01 数组,把所有 0 排在前面,1 排在后面, 返回交互次数

    def sort(self, nums):
if not nums: return nums
swaps = 0
left, right = 0, len(nums) - 1
while left <= right:
if nums[left] == 0:
left += 1
elif nums[right] == 1:
right -= 1
else:
# 交换 01 位置
nums[left], nums[right] = nums[right], nums[left]
left += 1
right -= 1
swaps += 1
return swaps

✅ 7. 编写一个函数,计算字符串中含有的不同字符的个数。字符在ACSII范围内0-127,不在范围的不作统计

# 字符串字符-字符统计
# 编写一个函数,计算字符串中含有的不同字符的个数。字符在ACSII范围内0-127,不在范围的不作统计
def count_unique_characters(self, s):
unique_characters = set()

for c in s:
if 0 <= ord(c) <= 127:
unique_characters.add(c)
# 减1,调试时发现有个 \n 被统计了
return len(unique_characters) - 1

✅ 8. 有序数组中找出两个数满足相加之和等于目标数 target,返回两个目标值

def two_sum_sorted(numbers, target):
# 1. 二分查找
left, right = 0, len(numbers) - 1
while left <= right:
curr_sum = numbers[left] + numbers[right]
if curr_sum == target:
return [numbers[left], numbers[right]]
elif curr_sum < target:
left += 1
else:
right -= 1
return []%

✅ 力扣 25. K 个一组翻转链表

class Solution:
# 反转链表的变种,拆分为子链表反转,条件判断,不足 k 把剩余子链表接到反转链表后返回
# 翻转一个子链表,并且返回新的头与尾
def reverse(self, head: ListNode, tail: ListNode):
prev = tail.next
p = head
while prev != tail:
nex = p.next
p.next = prev
prev = p
p = nex
return tail, head

def reverseKGroup(self, head: ListNode, k: int) -> ListNode:
dummy = ListNode(0)
dummy.next = head
pre = dummy

while head:
tail = pre
# 查看剩余部分长度是否大于等于 k
for i in range(k):
tail = tail.next
if not tail:
return dummy.next
nex = tail.next
head, tail = self.reverse(head, tail)
# 把子链表重新接回原链表
pre.next = head
tail.next = nex
pre = tail
head = tail.next

return dummy.next

❎ 力扣 93. 复原 IP 地址(类似)

字符串数字中的数字可以重复使用,会有爆炸的结果,比如 '23',输出结果 10000

class Solution:
def restoreIpAddresses(self, s: str) -> List[str]:
def backtrack(start, path):
if start == len(s) and len(path) == 4:
result.append(".".join(path))
return
if start >= len(s) or len(path) >= 4:
return

for length in range(1, min(4, len(s) - start) + 1):
segment = s[start:start + length]
if is_valid(segment):
path.append(segment)
backtrack(start + length, path)
path.pop()

def is_valid(segment):
if len(segment) > 1 and segment[0] == '0':
return False
num = int(segment)
return 0 <= num <= 255

result = []
backtrack(0, [])
return result

❎ 力扣 14:最长公共前缀(类似)

现给出目的ip地址和本地路由表,请输出最长匹配的路由,如果有多条,则按给出的先后顺序输出最先的,如果没有匹配的,输出字符串empty, 输入参数第一个为目的ip地址,十进制表示的字符串,第二个参数为n整数,表示路由表中路由的数量。

如上题型,可转换为最长公共前缀匹配。

def find_longest_matching_route(ip_address, n, routes):
matching_routes = []
max_matching_prefix_len = 0

for i in range(n):
route = routes[i]
prefix_len = int(route.split('/')[1])

# 将 IP 地址和路由前缀都转换为整数形式,便于比较
ip_int = int(''.join(ip_address.split('.')))
prefix_int = int(''.join(route.split('/')[0].split('.')))

# 计算路由前缀的掩码
mask = (1 << 32) - (1 << (32 - prefix_len))

# 判断 IP 地址是否匹配路由前缀
if (ip_int & mask) == (prefix_int & mask) and prefix_len >= max_matching_prefix_len:
matching_routes.append(route)
max_matching_prefix_len = prefix_len

return matching_routes[0] if len(matching_routes) > 0 else "empty"

✅ 力扣 3. 无重复字符的最长子串

class Solution:
def lengthOfLongestSubstring(self, s: str) -> int:
char_set = set()
max_length = 0
left = 0

for right in range(len(s)):
while s[right] in char_set:
char_set.remove(s[left])
left += 1
char_set.add(s[right])
max_length = max(max_length, right - left + 1)

return max_length

自拟题目

自拟题目,复杂度不一,有些仅实现伪代码,简单的则实际写完整。

1. 我有一台机器,1T 数据量,1 文件,内存:30G,CPU:10 个,对 1 T 的数据进行排序,输出排序结果到文件

思路:

第一阶段:切分 N 个文件,并局部排序 第二阶段:归并排序,合并 K 有序数组

class Solution:
def __init_(self):
self.chunks = []
self.blockSize = 25 # 单位:GB
self.n = 10
# 我有一台机器,1T 数据量,1 文件,30G 内存,CPU:N 个
# 对 1 T 的数据进行排序,输出排序结果到文件
# 第一阶段:切分 N 个文件,并局部排序
# 第二阶段:归并排序,合并 K 有序数组
def ExternalSort(self, inFile, outFile):
self.splitAndSort(inFile, self.blockSize)
self.mergeSort(outFile)

def splitAndSort(self, inFile, blockSize):
buckets = 1024 // blockSize
for _ in range(buckets):
chunk = self.readNextChunk(inFile, blockSize)
sorted(chunk) # 排序
self.writeChunkToDisk(chunk)
self.chunks.append(chunk)
def writeChunkToDisk(self, chunk):
pass
def readNextChunk(self, inFile, blockSize):
# TODO
return []
def mergeSort(self, outFile):
while len(self.chunks) > 0:
newChunks = []
length = len(self.chunks) // self.n
for i in range(self.n):
start = i
end = len(self.chunks) if i + length > len(self.chunks) else i + length
mergeChunk = self.mergeChunk(self.chunks[start: end])
newChunks.append(mergeChunk)
self.chunk = newChunks
self.writeChunkToDisk(self.chunk[0], outFile)
def writeChunkToDisk(self, chunk, outFile):
pass
def mergeChunk(self, rChunks):
pass

半小时,实现伪代码,完成度如上,没写完。

✅ 2. 实现一个 MergeSort,内存占用最小

白板写代码,有点紧张(写得很快),知道如何实现,hasNext 逻辑写的有问题,把放迭代器第一个元素给写进 hasNext 中了,面试官提示没返回 Boolean 类型值,有提示修改后依然有点问题。

import java.util.ArrayList;
import java.util.List;
import java.util.PriorityQueue;

public class Merge {

interface SortedIter {
boolean hasNext();
int next();
}

public SortedIter kMerge(List<SortedIter> iters) {
// 创建一个最小堆,用于合并有序序列
PriorityQueue<int[]> minHeap = new PriorityQueue<>((a, b) -> a[0] - b[0]);

// 将每个迭代器的第一个元素加入最小堆
for (SortedIter iter : iters) {
if (iter.hasNext()) {
int val = iter.next();
minHeap.offer(new int[]{val, iters.indexOf(iter)});
}
}

return new SortedIter() {
@Override
public boolean hasNext() {
return !minHeap.isEmpty();
}

@Override
public int next() {
if (!hasNext()) {
throw new UnsupportedOperationException("No more elements.");
}

int[] curr = minHeap.poll();
int val = curr[0];
int idx = curr[1];

SortedIter iter = iters.get(idx);
if (iter.hasNext()) {
int newVal = iter.next();
minHeap.offer(new int[]{newVal, idx});
}

return val;
}
};
}

public static void main(String[] args) {
List<SortedIter> iters = new ArrayList<>();

SortedIter iter1 = new SortedIter() {
private int[] arr = {1, 4, 7, 10};
private int index = 0;

@Override
public boolean hasNext() {
return index < arr.length;
}

@Override
public int next() {
return arr[index++];
}
};

SortedIter iter2 = new SortedIter() {
private int[] arr = {2, 5, 8};
private int index = 0;

@Override
public boolean hasNext() {
return index < arr.length;
}

@Override
public int next() {
return arr[index++];
}
};

iters.add(iter1);
iters.add(iter2);

Merge merge = new Merge();
SortedIter mergedIter = merge.kMerge(iters);

while (mergedIter.hasNext()) {
System.out.print(mergedIter.next() + " ");
}
}
}